
Adrian Sutherland
Rexx Language Symposium, Vienna

Introduction: Reinvigorating Rexx with High Performance

Rexx: An Enduring Legacy

● Designed for usability, scripting, and text processing.
● Strong presence in mainframe (VM, MVS, TSO/E), OS/2, and

as a glue language.
● ANSI Standard X3.274-1996 provides stability.

The Performance Imperative: Bridging the Gap

● Traditional interpreters face limits due to Rexx's dynamism
(typing, strings, runtime checks).

● Can be a bottleneck for demanding tasks.

CREXX: A Modern High-Performance Approach

● Ground-up implementation using contemporary VM
techniques.

● Aims for significantly higher performance while preserving
Rexx's strengths.

The CREXX Architecture: A Modern Foundation

● Integrated Components

○ CREXX Assembler (RXAS): Defines the low-level input
format

○ CREXX Virtual Machine (VM): The core execution
engine (interpreter)

○ Plugin System: Enables extensibility and customization

○ Planned LLVM Converter: For future native code
generation

● Leveraging Modern C/C++ Development

● Anticipated sophisticated compiler technologies like
LLVM from the outset

The CREXX Assembler: Design Philosophy

Interface between a Rexx frontend and the CREXX VM

● Instruction set tailored for efficient VM execution

● Defining Characteristic: "Large Instructions"

○ Encapsulate complex, higher-level Rexx semantics in a single
instruction

○ Example: A single instruction might perform a complex string
function or arithmetic with implicit type handling

● Rationale: Optimizing Interpreter Performance

○ Fewer instruction fetch, decode, and dispatch cycles per
high-level operation.

○ Directly reduces instruction dispatch overhead.

Trade-off: Can increase complexity for future JIT/AOT compilation
due to the "Semantic Gap" when targeting simpler IRs like LLVM.

The CREXX Virtual Machine: Interpreter Core
The heart of the execution environment

● Execution model based on a core loop: fetch, decode,
execute.

○ Key Performance Focus: Instruction Dispatch

○ Employing "Threading" techniques (e.g., Direct or Indirect
Threaded Code).

● Implemented using compiler extension, computed gotos
(GCC/Clang).

Goal: Minimize the overhead associated with dispatching to the
correct instruction handler.

● Reduces branching and improves branch predictor
efficiency compared to a traditional switch statement.

● Aims to make the interpreter loop itself as fast as possible.

Object Model and Data Representation
Supporting Rexx's dynamic typing and its single fundamental data type: the character
string.

Includes the requirement for arbitrary-precision decimal arithmetic.

Unique Register Model: "Large Registers"

● Designed to hold complex data structures directly.

● Can contain "Child Registers," effectively acting as objects or structured data
containers within the VM state.

Direct Representation of Rexx Stems:

● Mapping stem elements or substructures to child registers within a parent large
register.

● Potential to avoid overhead of traditional implementations using external hash
tables.

Numeric operations (e.g., using decNumber for arbitrary precision) can be integrated
seamlessly via the plugin system.

The current object model is intrinsically linked to this large register/child register
structure.

The Plugin Architecture: Extensibility
Provides extensibility and customization without requiring modifications to the
core VM source code.

Allows external modules to enhance or modify the VM's behavior dynamically.

Two Primary Types

● Native Function Plugins: Seamlessly integrate functions written in
native languages (C/C++). Leverage existing high-performance
libraries.

● Instruction Implementation Plugins: Allow plugins to override the default
implementation of specific CREXX assembler instructions. Example:
Plugging in Mike Cowlishaw's decNumber library for arbitrary-precision
arithmetic.

Offers remarkable flexibility, allowing core VM semantics (like arithmetic
precision) to be customized or replaced.

Trade-off: Requires an indirection mechanism in the dispatch path, potentially
introducing a small performance overhead compared to statically fixed
instruction semantics. Signifies a design choice favoring flexibility.

Performance Optimisation Deep Dive
The pursuit of high performance is a key factor in design choices, particularly the interplay
between large instructions, large registers, and threaded dispatch.

Large Instructions and Registers:

● Represents a deliberate departure from common VM design philosophies.

● Primary Advantage: Reduction of interpreter overhead. Fewer steps per semantic
task, operations potentially work directly on complex data in registers.

● Aims to maximize the performance of the interpreter execution mode.

● Trade-offs: Increase pressure on instruction cache, require more complex
decoding. Present a "semantic gap" when targeting lower-level representations
like LLVM IR. Prioritizes optimizing interpretation over simpler JIT mapping.

Instruction Dispatch ("Threading"):

● Optimizes the interpreter's main execution loop (e.g., using computed gotos).

● Eliminates large, multi-way branches, improving branch predictor efficiency.

● A well-established technique for maximizing pure interpreter speed.

Comparative Analysis: CREXX in the VM Landscape
CREXX's design comparing with general VM performance
techniques and high-performance implementations for other
languages.

Survey of VM Performance Techniques

● Just-In-Time (JIT) Compilation: Translating bytecode/IR to
native code at runtime. (Method-based, Tracing,
Meta-tracing).

● Garbage Collection (GC): Automatic memory management
to minimize pause times and maximize throughput.

● Optimizations: Compiler optimizations like inlining, dead
code elimination, type specialization, inline caching

CREXX's initial focus was on optimizing the interpreter phase,
whereas many modern high-performance VMs rely heavily on
multi-tiered JIT compilation

Case Studies: High-Performance VMs (Selected)

HotSpot JVM (Java): Mature, robust. Features a sophisticated
multi-tiered JIT (C1, C2), adaptive optimization, advanced GC.
Excellent peak performance for long-running applications, but has
warm-up time.

V8 (JavaScript/WebAssembly): Developed by Google.
Multi-tiered compilation pipeline (Ignition, Sparkplug, Maglev,
TurboFan). Generational GC, aggressive inline caching, hidden
classes. Optimized for dynamic web workloads, fast startup.

LuaJIT (Lua): Renowned for exceptional performance, especially
numerical. Combines a highly optimized assembly interpreter with
a tracing JIT. Very low FFI overhead. Can be sensitive to coding
style, potential trace explosion.

PyPy (Python via RPython): Implementation framework with a
meta-tracing JIT generator. Often significant speedups over
CPython. Optimizes through layers of abstraction. Issues are
warm-up time, and complexity of the meta-compilation
framework.

Positioning CREXX
CREXX's target language, Rexx, is relatively niche but has unique
features like powerful string manipulation and stem variables.

Design choices are strongly tailored to optimize these specific Rexx
features within an interpreted context.

The large instruction/register philosophy is a departure from the
trend towards simpler intermediate representations seen in many
JIT-focused VMs (e.g., V8 Ignition bytecode, LLVM IR itself).

While most modern high-performance VMs rely heavily on
multi-tiered JIT compilation, CREXX's initial focus is on maximizing
interpreter performance through techniques like threaded dispatch
and high-level instructions/registers.

The plugin system, particularly the ability to override instruction
implementations, offers a unique and deep level of extensibility
compared to typical FFI or embedding APIs.

The planned LLVM backend represents a significant future direction,
aiming to leverage AOT/JIT compilation.

The success of the LLVM backend hinges on overcoming the
significant challenge of mapping CREXX's high-level VM architecture
onto LLVM's low-level IR without sacrificing performance.

Future Directions: Enhancing the VM Core - Fast
Multi-branching
A planned enhancement involves integrating a mechanism termed
"ACPH" to accelerate multi-way branching.

Purpose is to optimize constructs like Rexx's SELECT statement
and potentially internal VM dispatch scenarios involving multiple
choices.

Addresses the inefficiency of standard implementations (sequential
comparisons, simple jump tables) for complex conditions or a large
number of branches.

It involve heuristics or pathfinding concepts to determine an optimal
evaluation order or structure for complex multi-branch scenarios.

Optimizing these control flow structures directly within the VM could
provide significant performance improvements for certain classes of
Rexx programs (including advanced parsing), complementing
instruction-level optimizations.

Future Directions: Evolving the Object Model
The initial object model, based on large registers containing child registers, is
slated for significant evolution to provide a more complete and flexible object
foundation.

Key Planned Enhancements:

● Text-indexed Child Registers: Allowing child registers (representing
object properties or stem variable elements) to be looked up using
arbitrary text strings as keys. Necessitates implementing an efficient
underlying data structure (binary tree or hash table) integrated with
the register system. Brings the model closer to the dynamic nature of
Rexx stems and typical dictionary/map implementations.

Trade-off: Introduces lookup overhead compared to direct indexing.

● Function Lookups for Registers: Including the ability to associate
functions directly with registers/objects. Implementing method
dispatch capabilities within the VM's core object model. Allows
behavior (code) to be tied directly to the VM's primary data structures.

These enhancements support a trajectory towards a more conventional,
albeit highly integrated, object system.

Future Directions: The CREXX Assembler to LLVM
Converter - Motivation
The most ambitious future plan is the development of a converter to translate CREXX
Assembler code into LLVM Intermediate Representation (IR).

This holds the promise of unlocking significant performance gains and portability benefits.

Primary Motivations:

● Leveraging LLVM's Optimization Passes: Accessing LLVM's mature and powerful
suite of optimization passes (e.g., opt).

● Highly Optimized Native Code Generation: Generating efficient machine code for a
wide array of target architectures (x86, ARM, z/Architecture).

● Enabling Ahead-of-Time (AOT) Compilation: Compiling CREXX programs into
standalone executables.

● Enabling a Just-In-Time (JIT) Compilation Backend: Moving towards a tiered
execution model, combining the optimized interpreter for startup/cold code with
LLVM-generated native code for hot spots. This mirrors strategies used by VMs like
JVM and V8.

Future Directions: The CREXX Assembler to LLVM
Converter - Technical Approach Outline

Parsing and Representation: The converter must parse the RXAS code and build an internal representation for
translation.

IR Mapping (The Core Challenge): Translating CREXX's high-level "large instructions" and the complex "large
register/child register" state onto LLVM's low-level, stateless, RISC-like, SSA-based IR.

● Instruction Decomposition: Breaking down single large RXAS instructions into sequences of multiple
simpler LLVM IR instructions (loads, stores, arithmetic ops, etc.).

● State Representation: Representing large and child registers using LLVM constructs like struct types,
alloca, getelementptr (GEP), and load/store instructions.

● Dynamic Typing: Handling Rexx's dynamic typing within the statically typed LLVM IR (e.g., using tagged
pointers or boxing values).

● SSA Conversion: Translating the potentially mutable RXAS register model into LLVM's Static Single
Assignment (SSA) form, potentially leveraging LLVM's mem2reg pass or explicitly inserting phi nodes at
control flow merges.

Runtime Library: Implementing complex Rexx semantics (arbitrary-precision arithmetic, intricate string ops, plugin
interactions) in a C/C++ runtime library that the generated LLVM code would call into.

LLVM Integration: Using LLVM's APIs (C++ API or C bindings) to programmatically construct the LLVM IR module.

Optimisation and Code Generation: Running LLVM's standard optimisation passes (opt) followed by the backend
(llc) to generate native code.

Future Directions: The CREXX Assembler to LLVM
Converter - Anticipated Challenges

Semantic Gap: The fundamental mismatch between the high-level abstraction of CREXX
assembler/VM and the low-level nature of LLVM IR is the primary challenge. Bridging this gap
efficiently is non-trivial.

State Mapping Complexity: Translating the potentially complex state held in large/child
registers into LLVM's memory model using structs, pointers, and GEP requires careful design
to ensure correctness and performance.

Potential Performance Overheads: The decomposition of large instructions, the overhead of
handling dynamic typing, and the necessity of calls to a runtime library could potentially negate
the benefits of LLVM's optimizations, possibly resulting in code slower than the highly
optimized CREXX interpreter. LLVM's own JIT process can also introduce latency and memory
overhead.

LLVM Complexity: The LLVM framework itself is vast and complex, with a steep learning curve.
Debugging issues within LLVM or in the generated code can be challenging.

The design choices made to optimize the interpreter (large instructions/registers) inherently
make this translation task more complex than for VMs with simpler instruction sets.

The Potential of CREXX and Call for Collaboration
Summary of the CREXX Project

● A significant and innovative undertaking within the Rexx
ecosystem.

● Novel VM architecture designed for high performance.

● Key features: large instructions, threaded dispatch, unique large
register/child register model for Rexx idioms.

● Flexible plugin system enabling native function integration and
instruction override.

● Aims for high interpreted execution speed while remaining
faithful to Rexx.

● Ambitious future roadmap including ACPH, object model
evolution, and the LLVM converter.

 The Vision for CREXX

● To revitalize the Rexx language by enabling substantially higher
performance across a wide range of modern platforms.

● Making Rexx a viable option for more computationally intensive
tasks.

Call to Action

● An open endeavor seeking engagement and
collaboration from the Rexx community.

● Achieving ambitious goals requires broader
participation.

● Contributions are particularly valuable in:
testing the interpreter, developing plugins,
improving documentation, providing design
feedback, and tackling the LLVM converter.

● Project resources (source code, issue
tracking, etc.) available on GitHub.

● Active participation from the Rexx Language
Symposium community and beyond is
crucial to CREXX's success.

