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Introduction: Reinvigorating Rexx with High Performance

Rexx: An Enduring Legacy 

● Designed for usability, scripting, and text processing.   
● Strong presence in mainframe (VM, MVS, TSO/E), OS/2, and 

as a glue language.   
● ANSI Standard X3.274-1996 provides stability.

The Performance Imperative: Bridging the Gap 

● Traditional interpreters face limits due to Rexx's dynamism 
(typing, strings, runtime checks).   

● Can be a bottleneck for demanding tasks.   

CREXX: A Modern High-Performance Approach 

● Ground-up implementation using contemporary VM 
techniques.   

● Aims for significantly higher performance while preserving 
Rexx's strengths.   



The CREXX Architecture: A Modern Foundation

● Integrated Components

○ CREXX Assembler (RXAS): Defines the low-level input 
format

○ CREXX Virtual Machine (VM): The core execution 
engine (interpreter)

○ Plugin System: Enables extensibility and customization

○ Planned LLVM Converter: For future native code 
generation

● Leveraging Modern C/C++ Development

● Anticipated sophisticated compiler technologies like 
LLVM from the outset



The CREXX Assembler: Design Philosophy

Interface between a Rexx frontend and the CREXX VM   

● Instruction set tailored for efficient VM execution

● Defining Characteristic: "Large Instructions" 

○ Encapsulate complex, higher-level Rexx semantics in a single 
instruction  

○ Example: A single instruction might perform a complex string 
function or arithmetic with implicit type handling

● Rationale: Optimizing Interpreter Performance 

○ Fewer instruction fetch, decode, and dispatch cycles per 
high-level operation.   

○ Directly reduces instruction dispatch overhead.   

Trade-off: Can increase complexity for future JIT/AOT compilation 
due to the "Semantic Gap" when targeting simpler IRs like LLVM.   



The CREXX Virtual Machine: Interpreter Core
The heart of the execution environment  

● Execution model based on a core loop: fetch, decode, 
execute.   

○ Key Performance Focus: Instruction Dispatch 

○ Employing "Threading" techniques (e.g., Direct or Indirect 
Threaded Code).   

● Implemented using compiler extension, computed gotos 
(GCC/Clang).   

Goal: Minimize the overhead associated with dispatching to the 
correct instruction handler.   

● Reduces branching and improves branch predictor 
efficiency compared to a traditional switch statement.   

● Aims to make the interpreter loop itself as fast as possible.



Object Model and Data Representation
Supporting Rexx's dynamic typing and its single fundamental data type: the character 
string.   

Includes the requirement for arbitrary-precision decimal arithmetic.   

Unique Register Model: "Large Registers" 

● Designed to hold complex data structures directly.   

● Can contain "Child Registers," effectively acting as objects or structured data 
containers within the VM state.   

Direct Representation of Rexx Stems: 

● Mapping stem elements or substructures to child registers within a parent large 
register.   

● Potential to avoid overhead of traditional implementations using external hash 
tables.     

Numeric operations (e.g., using decNumber for arbitrary precision) can be integrated 
seamlessly via the plugin system.   

The current object model is intrinsically linked to this large register/child register 
structure.



The Plugin Architecture: Extensibility
Provides extensibility and customization without requiring modifications to the 
core VM source code.   

Allows external modules to enhance or modify the VM's behavior dynamically.   

Two Primary Types 

● Native Function Plugins: Seamlessly integrate functions written in 
native languages (C/C++). Leverage existing high-performance 
libraries.   

● Instruction Implementation Plugins: Allow plugins to override the default 
implementation of specific CREXX assembler instructions. Example: 
Plugging in Mike Cowlishaw's decNumber library for arbitrary-precision 
arithmetic.   

Offers remarkable flexibility, allowing core VM semantics (like arithmetic 
precision) to be customized or replaced.   

Trade-off: Requires an indirection mechanism in the dispatch path, potentially 
introducing a small performance overhead compared to statically fixed 
instruction semantics. Signifies a design choice favoring flexibility.



Performance Optimisation Deep Dive
The pursuit of high performance is a key factor in design choices, particularly the interplay 
between large instructions, large registers, and threaded dispatch.   

Large Instructions and Registers: 

● Represents a deliberate departure from common VM design philosophies.   

● Primary Advantage: Reduction of interpreter overhead. Fewer steps per semantic 
task, operations potentially work directly on complex data in registers.   

● Aims to maximize the performance of the interpreter execution mode.   

● Trade-offs: Increase pressure on instruction cache, require more complex 
decoding. Present a "semantic gap" when targeting lower-level representations 
like LLVM IR. Prioritizes optimizing interpretation over simpler JIT mapping.   

Instruction Dispatch ("Threading"): 

● Optimizes the interpreter's main execution loop (e.g., using computed gotos).   

● Eliminates large, multi-way branches, improving branch predictor efficiency.   

● A well-established technique for maximizing pure interpreter speed.



Comparative Analysis: CREXX in the VM Landscape
CREXX's design comparing with general VM performance 
techniques and high-performance implementations for other 
languages.   

Survey of VM Performance Techniques

● Just-In-Time (JIT) Compilation: Translating bytecode/IR to 
native code at runtime. (Method-based, Tracing, 
Meta-tracing).   

● Garbage Collection (GC): Automatic memory management 
to minimize pause times and maximize throughput.   

● Optimizations: Compiler optimizations like inlining, dead 
code elimination, type specialization, inline caching 

CREXX's initial focus was on optimizing the interpreter phase, 
whereas many modern high-performance VMs rely heavily on 
multi-tiered JIT compilation



Case Studies: High-Performance VMs (Selected)

HotSpot JVM (Java): Mature, robust. Features a sophisticated 
multi-tiered JIT (C1, C2), adaptive optimization, advanced GC. 
Excellent peak performance for long-running applications, but has 
warm-up time.   

V8 (JavaScript/WebAssembly): Developed by Google. 
Multi-tiered compilation pipeline (Ignition, Sparkplug, Maglev, 
TurboFan). Generational GC, aggressive inline caching, hidden 
classes. Optimized for dynamic web workloads, fast startup.   

LuaJIT (Lua): Renowned for exceptional performance, especially 
numerical. Combines a highly optimized assembly interpreter with 
a tracing JIT. Very low FFI overhead. Can be sensitive to coding 
style, potential trace explosion.   

PyPy (Python via RPython): Implementation framework with a 
meta-tracing JIT generator. Often significant speedups over 
CPython. Optimizes through layers of abstraction. Issues are 
warm-up time, and complexity of the meta-compilation 
framework.



Positioning CREXX
CREXX's target language, Rexx, is relatively niche but has unique 
features like powerful string manipulation and stem variables.   

Design choices are strongly tailored to optimize these specific Rexx 
features within an interpreted context.   

The large instruction/register philosophy is a departure from the 
trend towards simpler intermediate representations seen in many 
JIT-focused VMs (e.g., V8 Ignition bytecode, LLVM IR itself).   

While most modern high-performance VMs rely heavily on 
multi-tiered JIT compilation, CREXX's initial focus is on maximizing 
interpreter performance through techniques like threaded dispatch 
and high-level instructions/registers.   

The plugin system, particularly the ability to override instruction 
implementations, offers a unique and deep level of extensibility 
compared to typical FFI or embedding APIs.   

The planned LLVM backend represents a significant future direction, 
aiming to leverage AOT/JIT compilation.   

The success of the LLVM backend hinges on overcoming the 
significant challenge of mapping CREXX's high-level VM architecture 
onto LLVM's low-level IR without sacrificing performance.   



Future Directions: Enhancing the VM Core - Fast 
Multi-branching
A planned enhancement involves integrating a mechanism termed 
"ACPH" to accelerate multi-way branching.   

Purpose is to optimize constructs like Rexx's SELECT statement 
and potentially internal VM dispatch scenarios involving multiple 
choices.   

Addresses the inefficiency of standard implementations (sequential 
comparisons, simple jump tables) for complex conditions or a large 
number of branches.   

It involve heuristics or pathfinding concepts to determine an optimal 
evaluation order or structure for complex multi-branch scenarios.   

Optimizing these control flow structures directly within the VM could 
provide significant performance improvements for certain classes of 
Rexx programs (including advanced parsing), complementing 
instruction-level optimizations.  



Future Directions: Evolving the Object Model
The initial object model, based on large registers containing child registers, is 
slated for significant evolution to provide a more complete and flexible object 
foundation.   

Key Planned Enhancements: 

● Text-indexed Child Registers: Allowing child registers (representing 
object properties or stem variable elements) to be looked up using 
arbitrary text strings as keys. Necessitates implementing an efficient 
underlying data structure (binary tree or hash table) integrated with 
the register system. Brings the model closer to the dynamic nature of 
Rexx stems and typical dictionary/map implementations. 

Trade-off: Introduces lookup overhead compared to direct indexing.   

● Function Lookups for Registers: Including the ability to associate 
functions directly with registers/objects. Implementing method 
dispatch capabilities within the VM's core object model. Allows 
behavior (code) to be tied directly to the VM's primary data structures.   

These enhancements support a trajectory towards a more conventional, 
albeit highly integrated, object system.



Future Directions: The CREXX Assembler to LLVM 
Converter - Motivation
The most ambitious future plan is the development of a converter to translate CREXX 
Assembler code into LLVM Intermediate Representation (IR).   

This holds the promise of unlocking significant performance gains and portability benefits.   

Primary Motivations: 

● Leveraging LLVM's Optimization Passes: Accessing LLVM's mature and powerful 
suite of optimization passes (e.g., opt).   

● Highly Optimized Native Code Generation: Generating efficient machine code for a 
wide array of target architectures (x86, ARM, z/Architecture).   

● Enabling Ahead-of-Time (AOT) Compilation: Compiling CREXX programs into 
standalone executables.   

● Enabling a Just-In-Time (JIT) Compilation Backend: Moving towards a tiered 
execution model, combining the optimized interpreter for startup/cold code with 
LLVM-generated native code for hot spots. This mirrors strategies used by VMs like 
JVM and V8. 



Future Directions: The CREXX Assembler to LLVM 
Converter - Technical Approach Outline

Parsing and Representation: The converter must parse the RXAS code and build an internal representation for 
translation.   

IR Mapping (The Core Challenge): Translating CREXX's high-level "large instructions" and the complex "large 
register/child register" state onto LLVM's low-level, stateless, RISC-like, SSA-based IR.

● Instruction Decomposition: Breaking down single large RXAS instructions into sequences of multiple 
simpler LLVM IR instructions (loads, stores, arithmetic ops, etc.).   

● State Representation: Representing large and child registers using LLVM constructs like struct types, 
alloca, getelementptr (GEP), and load/store instructions.   

● Dynamic Typing: Handling Rexx's dynamic typing within the statically typed LLVM IR (e.g., using tagged 
pointers or boxing values).   

● SSA Conversion: Translating the potentially mutable RXAS register model into LLVM's Static Single 
Assignment (SSA) form, potentially leveraging LLVM's mem2reg pass or explicitly inserting phi nodes at 
control flow merges.   

Runtime Library: Implementing complex Rexx semantics (arbitrary-precision arithmetic, intricate string ops, plugin 
interactions) in a C/C++ runtime library that the generated LLVM code would call into.   

LLVM Integration: Using LLVM's APIs (C++ API or C bindings) to programmatically construct the LLVM IR module.   

Optimisation and Code Generation: Running LLVM's standard optimisation passes (opt) followed by the backend 
(llc) to generate native code.   



Future Directions: The CREXX Assembler to LLVM 
Converter - Anticipated Challenges

Semantic Gap: The fundamental mismatch between the high-level abstraction of CREXX 
assembler/VM and the low-level nature of LLVM IR is the primary challenge. Bridging this gap 
efficiently is non-trivial.   

State Mapping Complexity: Translating the potentially complex state held in large/child 
registers into LLVM's memory model using structs, pointers, and GEP requires careful design 
to ensure correctness and performance.   

Potential Performance Overheads: The decomposition of large instructions, the overhead of 
handling dynamic typing, and the necessity of calls to a runtime library could potentially negate 
the benefits of LLVM's optimizations, possibly resulting in code slower than the highly 
optimized CREXX interpreter. LLVM's own JIT process can also introduce latency and memory 
overhead.   

LLVM Complexity: The LLVM framework itself is vast and complex, with a steep learning curve. 
Debugging issues within LLVM or in the generated code can be challenging.   

The design choices made to optimize the interpreter (large instructions/registers) inherently 
make this translation task more complex than for VMs with simpler instruction sets.   



The Potential of CREXX and Call for Collaboration
Summary of the CREXX Project

● A significant and innovative undertaking within the Rexx 
ecosystem.   

● Novel VM architecture designed for high performance.   

● Key features: large instructions, threaded dispatch, unique large 
register/child register model for Rexx idioms.   

● Flexible plugin system enabling native function integration and 
instruction override.   

● Aims for high interpreted execution speed while remaining 
faithful to Rexx.   

● Ambitious future roadmap including ACPH, object model 
evolution, and the LLVM converter.   

  The Vision for CREXX

● To revitalize the Rexx language by enabling substantially higher 
performance across a wide range of modern platforms.   

● Making Rexx a viable option for more computationally intensive 
tasks.  

Call to Action

● An open endeavor seeking engagement and 
collaboration from the Rexx community.   

● Achieving ambitious goals requires broader 
participation.   

● Contributions are particularly valuable in: 
testing the interpreter, developing plugins, 
improving documentation, providing design 
feedback, and tackling the LLVM converter.   

● Project resources (source code, issue 
tracking, etc.) available on GitHub.   

● Active participation from the Rexx Language 
Symposium community and beyond is 
crucial to CREXX's success.


